If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+6y+1=0
a = 6; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·6·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{3}}{2*6}=\frac{-6-2\sqrt{3}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{3}}{2*6}=\frac{-6+2\sqrt{3}}{12} $
| 5u-5=u+20 | | |n+2|=-1 | | (6i)(2i)=-12 | | 8x+15+7x+17=180 | | 47=-4(8-n)+7(n+5) | | 4x+6(2x-3)=7x+4-3x | | 2e+20=100+4e | | -5x-16=3x-3 | | 2x+10+5x=-2 | | 6x²+30x=-36 | | 4.5-(x+5)+2=3.5+6 | | (2x)(x2)= | | 5-n/2=4 | | -4(-6+n)-2(n+1)=70 | | 125=0.56x/0.56 | | x=68-9=70 | | 0.02(y-4)+0.12y=0.20y-0.2 | | 28+11=n+8 | | 9x−9=4x+11 | | x+51=x+41 | | -24=-4(r-1)-8(r+2) | | 18-14x=13x+29 | | 80+60+4+6x=180 | | −6x+8=−10x−20−10x−20 | | (2x-4)+2(2x-3)=3x-1 | | 5(-8b-8)-(b+2)=-1 | | 5c=7=-28 | | (2x-4)+2=3x-1 | | 4x-3(2x+6)=x-33 | | 4x-13+6x-17=180 | | 4m-12=-20 | | 1.6x=1x+6 |